The second speaker at our Workshop on City Science was Andrew Wisdom from Arup, talking about Cities as Systems of Systems. Andrew began with the observation that cities are increasingly under pressure, as the urban population continues to grow, and cities struggle to provide adequate infrastructure for their populations to thrive. But a central part of his message is that the way we think about things tends to create the way they are, and this is especially so with how we think about our cities.
As an exercise, he first presented a continuum of worldviews, from Technocentric at one end, to Ecocentric at the other end:
- In the Techno-centric view, humans are dissociated from the earth. Nature has no inherent value, and we can solve everything with ingenuity and technology. This worldview tends to view the earth as an inert machine to be exploited.
- In the Eco-centric view, the earth is alive and central to the web of life. Humans are an intrinsic part of nature, but human activity is already exceeding the limits of what the planet can support, to the point that environmental problems are potentially catastrophic. Hence, we need to get rid of materialism, eliminate growth, and work to restore balance.
- Somewhere in the middle is a Sustain-centric view, which accepts that the earth provides an essential life support system, and that nature has some intrinsic value. This view accepts that limits are being reached, that environmental problems tend to take decades to solve, and that more growth is not automatically good. Humans can replace some but not all natural processes, and we have to focus more on quality of life as a measure of success.
As an exercise, Andrew asked the audience to imagine this continuum spread along one wall of the room, and asked us each to go and stand where we felt we fit on the spectrum. Many of the workshop participants positioned themselves somewhere between the eco-centric and sustain-centric views, with a small cluster at the extreme eco-centric end, and another cluster just to the techno-centric side of sustain-centric. Nobody stood at the extreme techno-centric end of the room!
Then, he asked us to move to where we think the city of Toronto sits, and then where we think Canada sits, and finally where we feel the world sits. For the first two of these, everyone shifted a long way towards the technocentric end of the spectrum (and some discussion ensued to the effect that both our mayor and our prime minister are a long way off the chart altogether – they are both well known for strong anti-environmentalist views). For the whole world, people didn’t move much from the “Canada” perspective. An immediate insight was that we (workshop attendees) are far more towards the ecocentric end of the spectrum than either our current city or federal governments, and perhaps the world in general. So if our governments (and by extension the voters who elect them) are out of step with our own worldviews, what are the implications? Should we, as researchers, be aiming to shift people’s perspectives?
One problem that arises from one’s worldview is how people understand messages about environmental problems. For example, people with a technocentric perspective tend to view discussions of sustainability as being about sacrifice – ‘wearing a hair shirt’, consume less, etc. Which then leads to a waning interest in these topics. For example, analysis of google trends on terms like global warming and climate change show spikes in 2007 around the release of Al Gore’s movie and the IPCC assessment, but declining interest since then.
Jeb Brugmann, the previous speaker, talked about the idea of a Consumptive city versus a Generative city, which is a change in perspective that alters how we view cities, changes what we choose to measure, and hence affects the way our cities evolve.
Changes in the indices we pay attention to can have a dramatic impact. For example, a study in Melbourne created that VAMPIRE index (Vulnerability Assessment for Mortgage, Petroleum and Inflation Risks and Expenses), which shows the relative degree of socio-economic stress in suburbs in Brisbane, Sydney, Melbourne, Adelaide and Perth. The pattern that emerges is that in the Western suburbs of Melbourne, there are few jobs, and many people paying off mortgages, all having to commute and hour and a half to the east of the city for work.
Our view of a city tend to create structures that compartmentalize different systems into silos, and then we attempt to optimize within these silos. For example, zoning laws create chunks of land with particular prescribed purposes, and then we end up trying to optimize within each zone. When zoning laws create the kind of problem indicated by the Melbourne VAMPIRE index, there’s little the city can do about it if they continue to think in terms of zoning. The structure of these silos has become fossilized into the organizational structure of government. Take transport, for example. We tend to look at existing roads, and ask how to widen them to handle growth in traffic; we rarely attempt to solve traffic issues by asking bigger questions about why people choose to drive. Hence, we miss the opportunity to solve traffic problems by changing the relationship between where people live and where they work. Re-designing a city to provide more employment opportunities in neighbourhoods that are suffering socio-economic stress is far more likely to help than improving the transport corridors between those neighbourhoods and other parts of the city.
Healthcare is another example. The outcome metrics typically used for hospital use include average length of stay, 30-day unplanned readmission rate, cost of readmission, etc. Again, these metrics create a narrow view of the system – a silo – that we then try to optimize within. However, if you compare European and American healthcare systems, there are major structural difference. The US system is based on formula funding, in which ‘clients’ are classified in terms of type of illness, standard interventions for that illness, and associated costs. Funding is then allocated to service providers based on this classification scheme. In Europe, service provides are funded directly, and are able to decide at the local level how best to allocate that funding to serve the needs of the population they care for. The European model is a much more flexible system that treats patients real needs, rather than trying to fit each patient into a pre-defined category. In the US, the medical catalogue of disorders becomes an accounting scheme for allocating funds, and the result is that in the US, medical care costs going up faster than any other country. If you plot life expectancy against health spending, the US is falling far behind:


The problem is that the US health system views illness as a problem to be solved. If you think in terms of wellbeing rather than illness, you broaden the set of approaches you can use. For example, there are significant health benefits to pet ownership, providing green space within cities, and so on, but these are not fundable with the US system. There are obvious connections between body mass index and the availability of healthy foods, the walkability of neighbourhoods, and so on, but these don’t fit into a healthcare paradigm that allocates resources according to disease diagnosis.
Andrew then illustrated the power of re-thinking cities as systems-of-systems through several Arup case studies:
- Dongtan eco-city. This city was designed from the ground up to be food positive, and energy positive (ie. intended to generate more food and more clean energy than it uses). The design makes it more preferable to walk or bike than to drive a car. A key design tool was the use of an integrated model that captures the interactions of different systems within the city. [Dongtan is, incidentally, a classic example of how the media alternately overhypes and then trashtalks major sustainability initiatives, when the real story is so much more interesting].
- Low2No, Helsinki, a more modest project that aims to work within the existing city to create carbon negative buildings and energy efficient neighbourhoods step by step.
- Werribee, a suburb of Melbourne, which is mainly an agricultural town, particularly known for its broccoli farming. But with fluctuating prices, farmers have had difficulty selling their broccoli. In an innovative solution that turns this problem into an opportunity, Arup developed a new vision that uses local renewable energy, water and waste re-processing to build a self-sufficient hothouse food production and research facility that provides employment and education along with food and energy.
In conclusion, we have to understand how our views of these systems constrain us to particular pathways, and we have to understand the connections between multiple systems if we want to understand the important issues. In many cases, we don’t do well at recognizing good outcomes, because our worldviews lead us to the wrong measures of success, and then we use these measures to create silos, attempting to optimize within them, rather than seeing the big picture. Understanding the systems, and understanding how these systems shape our thinking is crucial. However, the real challenges then lie in using this understanding to frame effective policy and create effective action.
After Andrew’s talk, we moved into a hands-on workshop activity, using a set of cards developed by Arup called Drivers of Change. The cards are fascinating – there are 189 cards in the deck, each of which summarizes a key issue (e.g. urban migration, homelessness, clean water, climate change, etc), and on the back, distills some key facts and figures. Our exercise was to find connections between the cards – each person had to pick one card that interested him or her, and then team up with two other people to identify how their three cards are related. It was a fascinating and thought-provoking exercise, that really got us thinking about systems-of-systems. I’m now a big fan of the cards and plan to use them in the classroom. (I bought a deck at Indigo for $45, although I note that, bizarrely, Amazon has them selling for over $1000!).















